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Abstract. For the single-particle potential surface of the two-center shell model, two geometrical quantities
which determine the local Liapunov exponents are derived. It is shown that the appearance of a large
positive local Liapunov exponent in a large area of the coordinate space leads to the quantum chaotic
motion of a single particle in heavy nuclei. For both small and large (or medium) separations of the two
centers, the dependence of the quantum chaotic motion on the neck deformation is interpreted from the
dynamical point of view.

PACS. 05.45.+b Theory and models of chaotic systems – 21.60.Cs Shell model – 03.20.+i Classical
mechanics of discrete systems: general mathematical aspects – 11.10.Lm Nonlinear or nonlocal theories
and models – 11.30.Na Nonlinear and dynamical symmetries

1 Introduction

One of the best systems for the studies of quantum chaos
is the atomic nucleus. Roughly speaking, the studies of
quantum chaos related to nuclei have two aspects. One is
to discuss the chaos in realistic nuclei [1,2]. The other is
to investigate the single-particle (nucleonic) motion in a
deformed nucleus based on the mean field approach [3-5].
The symmetry (or absence of symmetry) of the mean field
associated with the geometric shape of nuclei determines
the regularity (or chaoticity) of the single-particle motion.
In our previous work [6], in the framework of the two-
center shell model (TCSM) we have systematically studied
the nearest neighbor level spacing distribution and spec-
tral rigidity of single-particle energy levels of heavy nuclei
when the shape parameters of a nucleus are changed. The
shape parameter region, in which the spacing distribution
of spectra and spectral rigidity are approximately close to
those of the Gaussian orthogonal ensemble (GOE), was
found. We call this shape parameter region as the chaotic
region of shape parameters, in which the quantum chaotic
motion of a single particle is realized. Meanwhile, we have
found that there is a good quantun-classical correspon-
dence for the regular (chaotic) single-particle motion [7].
Although the relationship between the quantum chaotic
motion and the shape deformation has been clarified, the
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dynamical origin of the quantum chaotic motion remains
to be an open question.

During the past few decades, there has been increasing
interest in the study of the relationship between the local
instability governed by geometry of potential energy sur-
face and the global instability of a system. In 1974 Toda
[8] considered a periodic lattice of the three particles with
nearest neighbour nonlinear interaction and introduced
a criterion that a trajectory is stochastic (chaotic) if it
passes through regions of the local instability in which
the curvature of the potential energy surface has negative
value. The criterion has been called often Toda criterion.
Toda criterion has been criticized soon after its formula-
tion, e. g. in the paper by Benettin et al.[9], where coun-
terexamples were given. For a more recent paper [10] Ch.
Dellago and H. A. Posch found that there is no simple
relationship between the Riemannian curvature along a
trajectory and the stability of motion. In a word, the ex-
istence of the region of local instability is not a sufficient
condition for global instability. Nevertheless, Toda crite-
rion works in many systems [11-14]. We notice that the
occurrence of quantum chaotic motion of a single particle
in the TCSM is closely related to the shape deformation
of a nucleus which actually determines the potential en-
ergy surface. Therefore, the study of the local instability
determined by the geometry of the potential energy sur-
face may help to understand the dynamical origin of the
quantum chaotic motion.
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In the present work we shall derive two geometric
quantities determining the local Liapunov exponents (the
local instability) for the single-particle potential of the
TCSM. Our attention will be mainly focused on the con-
nections between the quantum chaotic motion of a single
particle in heavy nuclei and the local Liapunov exponents
in order to seeking out the dynamical origin of the quan-
tum chaotic motion. Since the neck deformation being a
specific feature of the TCSM plays an important role in
heavy ion collision, fusion-fission and nuclear molecular
states, its influence on the local Liapunov exponents will
be particularly paid attention to.

2 The two-center shell model and the chaotic
region

Neglecting the spin-orbit coupling and angular momen-
tum square terms, the single-particle Hamiltonian of the
TCSM in cylinder coordinetes z, ρ, φ is as follows

H = − h̄
2 ∇2

2m0
+ V (ρ, z). (1)

The potential reads
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by denoting the positions of the centers of the two frag-

ments by z1 and z2, z1 ≤ 0 ≤ z2, with the abbreviation

z′ =
{
z − z1, z < 0
z − z2. z > 0

All shape deformation parameters of a nucleus can be
reduced to the following five independent ones. (a) The
separation of the two centers ∆z=z2 − z1. (b) The neck
deformation of a nucleus ε = E0

E′
, where E

′
= 1

2m0ω
2
ziz

2
i

(i=1,2), E0 is the actual height of the barrier [15]. ε=0 cor-
responds to ovaloids, ε=1 to well necked-in shapes. (c) The
mass asymmetry Xi = (A1−A2)

(A1+A2) which ranges from 0 to 1.
A1 and A2 are the mass numbers of the fragments , which
have no explicit expression and are evaluated numerically
[15]. (d) The ellipsoidal deformations of the fragments (lo-
cal deformations) βi=

ωρi
ωzi

(i=1,2). If Xi =0, β1=1=β2 and
ε=0, the shape deformation is a pure quadrupole one.
Provided Xi 6=0, an octupole-like deformation appears.
If Xi is larger, and local deformations β1 and β2 are quite
asymmetry (i. e. one of the fragments appears pronounced
oblate, the other the pronounced prolate.), then a larger
octupole-like deformation is expected.

The parameters in (2) can be written in the form

f0 = 4ε, ci =
1
zi
, di =

1
4z2
i

(i = 1, 2),
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, z2 =
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1 +Q3
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with Q = ωρ2
ωρ1

, Q3 = β2
β1Q

. The frequencies ωzi and ωρi
(i=1,2) can be determined by the five shape parameters
together with the requirements of the volume conservation
and smooth joining of the potential. Thus, when the five
shape parameters are given all of the parameters in (2)
will be determined uniquely.

It has been found that for heavy nuclei the single-
particle spacing distribution and spectral rigidity are ap-
proximately close to those of GOE when the shape pa-
rameters fall into the following region [6]:

2.0 < ∆z < 5.0 fm, 0.4 < Xi < 0.7,

0.2 < β1 < 0.5, 2.0 < β2 < 4.0,

εmin < ε < 0.9,

(εmin = 0 for 2.0 < ∆z < 3.0,

εmin = 0 ∼ 0.3 for 3.0 < ∆z < 5.0 fm). (I)

5.0 < ∆z < 11.0 fm, 0.3 < Xi < 0.8,

0.3 < β1 < 0.6, 2.0 < β2 < 5.0,

0.3 < ε < 0.8. (II)

Both of the parts (I) and (II) of the chaotic region ex-
hibit that the appearance of the quantum chaotic motion
requires a considerable octupole-like deformation. The
shape parameters in (I) and (II) correspond to the oblate
and prolate shapes of a nucleus, respectively. Therefore
the quantum chaotic motion occurs not only in the heavy
nuclei with oblate shapes but also in prolate ones with a
proper neck deformation. The neck deformation apprecia-
bly influences the occurence of the quantum chaotic mo-
tion when the separation is medium or large (5.0 < ∆z<
11.0 fm) , however it is weakly dependent on ε when ∆z
is small (2.0 < ∆z< 5.0 fm).

3 Local Liapunov exponents and the quantum
chaotic motion

Since the single-particle dynamics is connected with the
shapes of the potential energy surfaces, an investigation of
the effect of the shape deformation on the dynamical be-
haviour quantitatively requires one to estimate the rate of
separation of neighboring trajectories in the phase space.
For a Hamiltonian system,

H(p, r) =
p2

2
+ V (r). (4)
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With the initially neighboring trajectories r1(t), p1(t) and
r2(t), p2(t), the linearized equations of motion for the de-
viations

ξ(t) = r1(t)− r2(t), η(t) = p1(t)− p2(t) (5)

have the form
.

ξ (t) = η(t),
.
η (t) = −S(t)ξ, (6)

where S(t) is the matrix constructed from the second
derivatives of potential V (r) and is calculated along the
fiducial trajectory r1(t):

Sij(t) =
∂2V

∂ ri∂ rj
|r=r1(t). (7)

The stability of the motion of the dynamical system in
the N- dimension case is described by the 2N×2N matrix
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I are zero and unit N×N matrices, respec-

tively. One can find a time-dependent transformation
∧
T

such that

[
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]ij = λi(t)δij . (8)

As long as one of the eigenvalues λi is real, then the
separation of the trajectories grows exponentially, and the
motion is unstable. Imaginary eigenvalues correspond to
the stable motion. In general, the eigenvalues and, there-
fore, the nature of the motion, changes with time. To diag-

onalize the matrix
∧
Γ (t) is equivalent to solving the origi-

nal equations of the motion. Bolotin assumed [11] that the

time-dependent
∧
S(t) can be eliminated by replacement of

the time-dependent point r1(t) of the phase space by a
time-independent coordinate r. This reduces (6) to

.

ξ= η,
.
η= −

∧
S (r)ξ, (9)

in which the coordinate r is regarded as a time-
independent parameter. The problem is then greatly sim-
plified. For a system with 2 degrees of freedom, the equa-

tion for eigenvalues of the matrix
∧
Γ takes the form
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Its solutions are

λ1,2,3,4 = ± [−b±
√
b2 − 4c]

1
2 , (10)

which are called local Liapunov exponents. Here

b = SpS(q) =
∂2V

∂q2
1

+
∂2V

∂q2
2

, (11)
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Thus, whether or not the neighboring trajectories in the
neighborhood of a point (q1, q2) are exponentially sep-
arated is simply determined by the presence or absence
of a positive local Liapunov exponent λ+ (λ+ = [−b +√

(b2 − 4c) ]
1
2 ) which characterizes the local instability.

Usually one assumes that b>0, then under the condition
that c>0 the solutions are purely imaginary and the mo-
tion is stable. For c<0, one pair of roots become real (a
λ+ emerges), and this leads to exponential separation of
neighboring trajectories. It turns out that c has the same
sign as the Gaussian curvature of the potential energy sur-
face [11]. However, in many physical problems b is not al-
ways positive. If b<0, then when c<0 or b2

4 >c> 0, one can
expect a λ+. For c> b2

4 , the pair of roots become complex
(the real part is positive), and this leads to the oscillation
of separation of neighboring trajectories with an increas-
ing amplitude with time, thus local instability also takes
place .

Now we consider the classical analogy of Hamiltonian
(1). In order to be in consistence with (4), the m0 in (1)-
(2) is taken to be 1. According to (11)-(12), the explicit
expressions of b and c for the potential described by (2)
can be written as
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and

c(ρ, z) =



ω2
ρ1
ω2
z1 , z < z1

ω4
ρ1
ρ2g1(1− 3g1z

′2) + f0ω
2
z1ω

2
ρ1

×(1 + 3c1z′ + 6d1z
′2)(1 + g1z

′2) z1 < z < 0

ω4
ρ2
ρ2g2(1− 3g2z

′2) + f0ω
2
z2ω

2
ρ2

×(1 + 3c2z′ + 6d2z
′2)(1 + g2z

′2) z2 > z > 0

ω2
ρ 2 ω

2
z2 , z > z2.

(14)
By means of (13)-(14), one can see that in the region

z<z1 or z>z2 both b and c are positive so that no λ+

can be obtained in terms of (10). When the shape de-
formation is pure quadrupole, namely Xi=0, β1=1=β2,
ε = 0 and g1=0=g2 (in terms of (3)), in the region of
z1 < z < z2 and 0 < ρ < ∞ the c vanishes and the b is
positive. According to (10) a λ+ will not appear. We find
that the typical trajectories in this case are quasi-periodic
as shown in Fig.1. So the single-particle motion is stable.
However, the negative values of b and c arise in some area
in the region z1 < z < z2, 0 < ρ < ∞ provided that an
octupole-like deformation Xi 6=0 is added. Because of the
axial symmetry it is then sufficient just to consider b and
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Fig. 1. The typical trajectory in the coordinate space. ∆z=9.0
fm, Xi=0, β1=1=β2 and ε = 0. The energy of the system e=30
MeV

c in a meridian plane (e. g. x-z plane, a coordinate space).
We plot the b and c as functions of x and z in Fig. 2a
and Fig. 2b, respectively. One can see that the area with
negative values of b and c is located within the region
z1 < z < z2, −∞ < x < ∞. According to (10) and the
above discussion on the λ+, b and c, one can expect the
emergence of λ+ in some area in the region z1 < z < z2,
−∞ < x <∞.

We have found that an octupole-like deformation
strongly influences the value of the λ+, which, as a func-
tion of x and z is displayed for different octupole-like de-
formations in Fig. 3a-c, where ∆z=9.0 fm, ε = 0.50, and
z is restricted within z1 < z < z2. In order to examine
the relationship between the local and global instabilities
of the single-particle system, we also display the typical
trajectories characterizing the global instability (or global
stability) for each of cases. In Fig. 3a we take Xi=0.10,

Fig. 2. The b and c as functions of x and z. (a) for b, (b) for c. ∆z=9.0 fm, ε=0.50, Xi=0.40, β1=0.40, β2=2.50

β1=0.80 and β2=1.20 ( a small octupole-like deformation).
One can see that the λ+ mainly emerges in the vicinity
of the point z=0, and the area of |x|>6.0 fm and z>0.
The magnitude of the λ+ is rather small, its maximum is
about 10 MeV. In this situation the typical trajectories
are no longer quasi-periodic and become rather compli-
cated but less irregular as illustrated in Fig. 3a. With the
increase of the octupole-like deformation, the magnitude
is increasing. In Fig. 3b, we take Xi=0.20, β2=0.60 and
β2=1.80, obviously, the octupole-like deformation is larger
than that in Fig. 3a. We find that the magnitude of λ+

goes up and the area with λ+ is enlarged compared to that
in Fig. 3a, and its maximum value reaches up to 20 MeV.
At the same time one can see that the typical trajectory
becomes irregular. When an octupole-like deformation is
so large that the shape parameters fall into the chaotic re-
gion, then the magnitude of λ+ and the area with λ+ will
become quite large. This is illustrated by Fig. 3c where
Xi=0.40, β1=0.40 and β2=2.50 (the five parameters have
fallen into the chaotic region), and the maximum value of
λ+ goes up to 40 MeV. As a result, the typical trajectory
is extremely irregular (chaotic) in this case.

We notice that when the quantum chaotic motion of
the single particle takes place the λ+ characterizing the
locally dynamical instability has a large value in a large
area of the coordinate space. Therefore, the occurrence of
a large value of λ+ in a large region of coordinate space
should be regarded as the dynamical origin of the quantum
chaotic motion. At the same time one can see that the
local instability is intimately connected with the global
instability of the system and strongly global instability
can be realized when the λ+ has a large value in a large
area of the coordinate space. So Toda criterion is valid for
the present system.

We find that in the presence of a larger octupole-like
deformation, the behaviour of λ+ does not strongly de-
pend on ε when the separation is small (the correspond-
ing shape of a nucleus is oblate). In Fig. 4 the λ+ versus z
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Fig. 3.
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Fig. 3. The λ+ as a function of x and z for different octupole-like deformations and the corresponding typical trajectories
for each of cases, e=30 MeV. (a) ∆z=9.0 fm, ε=0.50, Xi=0.10, β1=0.80, β2=1.20. (b) ∆z=9.0 fm, ε=0.50, Xi=0.20, β1=0.60,
β2=1.80. (c) ∆z=9.0 fm, ε=0.50, Xi=0.40, β1=0.40, β2=2.50

Fig. 4. The λ+ versus z for different ε at a small separation.
∆z=3.0 fm, Xi=0.40, β1=0.40, β2=2.50. The dotted line is for
ε=0.10, the dashed one for ε=0.30, the solid one for ε=0.60

at x=7.0 fm (such a section can approximately reflect the
behavior of λ+ in the coordinate space) is shown for differ-
ent ε, in which ∆z=3.0 fm, Xi=0.40, β1=0.40, β2=2.50.
One can see that the magnitude of the λ+ is quite large
(the maximum is larger than 50 MeV), and the behaviour
of the λ+ is weakly dependent on ε. This can be qualita-

Fig. 5. The λ+ versus z for different ε at a large separation.
∆z=9.0 fm, Xi=0.40, β1=0.40, β2=2.50. The dotted line is for
ε=0.10, the dashed one for ε=0.30, the solid one for ε=0.60

tively understood by means of (13)-(14) as follows. When
a larger octupole-like deformation is present, the Q in (3)
becomes much larger than 1, then g1 and g2 also become
larger if the separation is small. Thus, the first term of
c may have the pronounced negative values in the region
z2 > z > z1 +

√
3g1

3g1
. The second term of c becomes neg-
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ative in the region
√

3
3 z1 < z <

√
3

3 z2, its magnitude is
determined by ε (f0 = 4ε). Therefore, in the presence of a
larger octupole-like deformation, a λ+ with larger magni-
tude in a larger area can be expected for small separation
in the region max(z1 +

√
3g1

3g1
,
√

3
3 z1) < z <

√
3

3 z2 even if ε
is very small. That is the dynamical reason why the quan-
tum chaotic motion weakly depends on ε when the sepa-
ration is small. As the separation is increased, g1 and g2

become smaller, the first terms of b and c become smaller
too. Then the second term of c becomes indispensable to
building a pronounced negative c. Therefore ε will appre-
ciably influence the λ+, and the occurrence of a large λ+

in a large area requires a considerable neck deformation in
addition to a larger octupole-like deformation. This is cor-
roborated by the following numerical results. In Fig. 5 the
λ+ versus z at x=7.0 fm is exhibited for different values
of ε, in which ∆z=9.0 fm, Xi = 0.40, β1 = 0.40, β2=2.50.
One can see that with the increase of ε the magnitude of
the λ+ goes up rapidly. Thus it is understood at a dynam-
ical level that why the appearance of the quantum chaotic
motion needs a considerable neck deformation when the
separation is medium or large. Heiss et al.[3] studied that
a single-particle moving in a potential with an octupole
deformation built on a quadrupole deformation (neglect-
ing the spin-orbit l.s and square angular momentum l2

terms). They indicated that the single-particle motion is
regular for prolate shapes of nuclei and chaotic for oblate
ones. Similar conclusion was drawn also by Arita et al.[4].
In their works, the neck deformation was not included.
According to our calculation , for prolate shapes one can
not expect the λ+ with large magnitude in a large area,
so that the single-particle quantum chaos can not be in-
duced. However, for oblate shapes the quantum chaotic
motion may be induced because the λ+ with large value
may arise in a large area even if the neck deformation is
very small.

4 Summary

In the present work we have derived the expressions of
b and c which determine the local Liapunov exponents.
It has been found an octupole-like deformation strongly
influences not only the magnitude of a positive local Li-
apunov exponent λ+ but also the area having λ+ in the
coordinate space (x-z plane). The appeareance of a large
λ+ in a large area of the coordinate space is the dynamical
origin of the quantum chaotic motion of a single particle
in heavy nuclei. In the chaotic region of shape parame-
ters the λ+ can reach a large value in a large area. It has
been also shown that the local instability is closely re-

lated to the global instability and Toda criterion is valid
for the present system. Meanwhile we have provided the
dependence of the quantum chaotic motion for the neck
deformation both at small and large (or medium) separa-
tions with a dynamical interpretation. In addition, at the
dynamical level, it is understood that the single-particle
quantum chaotic motion arises only for nuclei with oblate
shapes rather than those with prolate ones when a neck
deformation is not included. We believe that the present
work is heuristic for the study of dynamical origin of the
quantum chaotic motion in a general system in which the
Hamiltonian is purely governed by its geometry.
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